Calcium-dependent oligomerization of synaptotagmins I and II. Synaptotagmins I and II are localized on the same synaptic vesicle and heterodimerize in the presence of calcium.
نویسندگان
چکیده
Synaptotagmins constitute a large family of membrane proteins characterized by their distinct distributions and different biochemical features. Genetic evidence suggests that members of this protein family are likely to function as calcium sensors in calcium-regulated events in neurons, although the precise molecular mechanism remains ill defined. Here we demonstrate that different synaptotagmin isoforms (Syt I, II, and IV) are present in the same synaptic vesicle population from rat brain cortex. In addition, Syt I and II co-localize on the same small synaptic vesicle (SSV), and they heterodimerize in the presence of calcium with a concentration dependence resembling that of the starting phase of SSV exocytosis (EC50 = 6 +/- 4 microM). The association between Syt I and Syt II was demonstrated by immunoprecipitation of the native proteins and the recombinant cytoplasmic domains and by using fluorescence resonance energy transfer (FRET). Although a subpopulation of SSV containing Syt I and IV can be isolated, these two isoforms do not show a calcium-dependent interaction. These results suggest that the self-association of synaptotagmins with different calcium binding features may create a variety of calcium sensors characterized by distinct calcium sensitivities. This combinatorial hypothesis predicts that the probability of a single SSV exocytic event is determined, in addition to the gating properties of the presynaptic calcium channels, by the repertoire and relative abundance of distinct synaptotagmin isoforms present on the SSV surface.
منابع مشابه
Direct interaction of the calcium sensor protein synaptotagmin I with a cytoplasmic domain of the alpha1A subunit of the P/Q-type calcium channel.
Synaptotagmins are synaptic vesicle proteins containing two calcium-binding C2 domains which are involved in coupling calcium influx through voltage-gated channels to vesicle fusion and exocytosis of neurotransmitters. The interaction of synaptotagmins with native P/Q-type calcium channels was studied in solubilized synaptosomes from rat cerebellum. Antibodies against synaptotagmins I and II, b...
متن کاملSynaptotagmins are trafficked to distinct subcellular domains including the postsynaptic compartment
The synaptotagmin family has been implicated in calcium-dependent neurotransmitter release, although Synaptotagmin 1 is the only isoform demonstrated to control synaptic vesicle fusion. Here, we report the characterization of the six remaining synaptotagmin isoforms encoded in the Drosophila genome, including homologues of mammalian Synaptotagmins 4, 7, 12, and 14. Like Synaptotagmin 1, Synapto...
متن کاملLocalization of synaptotagmin-binding domains on syntaxin.
Synaptotagmin, an abundant calcium- and phospholipid-binding protein of synaptic vesicles, has been proposed to regulate neurotransmitter release at the nerve terminal. To understand better the biochemical mechanism of neurotransmitter release, we have investigated the calcium-dependent and -independent protein-protein interactions between synaptotagmin I and syntaxin 1a, a subunit of the recep...
متن کاملDistribution of the presynaptic calcium sensors, synaptotagmin I/II and synaptotagmin III, in the goldfish and rodent retinas.
Synaptic vesicle exocytosis is triggered by rises in calcium up to 100 microM at the site of vesicle fusion. The synaptic vesicle proteins synaptotagmin 1 and 2 (Syt I and Syt II) bind calcium at similarly high concentrations and have been proposed as the calcium sensors for fast neurotransmitter release. However, 1 microM calcium produces tonic transmitter release at photoreceptor and bipolar ...
متن کاملP-97: Parthenogenetic Activation of Mouse Oocyte Using Calcium Ionophore in The Presence of Different Concentrations of Extracellular Calcium
Background: Parthenogenetic activation is a possible way to produce homogeneous embryos with the some ploidy. Probably such embryos could be used in other areas of biotechnology. Calcium signals are known as important regulators of oocyte activation. Extracellular calcium is required for initiation of meiotic resumption and development. Calcium ionophore A23187 is known to elevate intracellular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 1 شماره
صفحات -
تاریخ انتشار 1999